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A B S T R A C T

Hotspot detection in infrared thermal (IRT) images obtained by unmanned aerial vehicles (UAVs) is essential
for the reliability, safety and efficiency of photovoltaic (PV) plants. We observe that some objects in the
complicated environment, which are outside the region of PV arrays, might significantly interfere with the
performance of automatic hotspot detection. This work focuses on the problem of PV array extraction from
complex scene, which has not been solved in previous literature. Existing studies have attempted image
processing methods to extract PV arrays. However, these approaches rely on manually designed features and
parameters, which are impractical for complex scene. In this paper, a deep learning model, namely modified
U-Net, is proposed to solve the problem. The proposed model can learn features and parameters automatically.
Base on the classical U-Net, several innovations are provided: (1) batch normalization layers are adopted to
alleviate internal covariate shift problems; (2) ‘‘He initialization" is used to increase the robustness and speed
up the convergence; and (3) ‘‘RMSprop" is adopted to update parameters adaptively. 1211 IRT images of a
PV plant containing complex background are collected to verify the effectiveness of the proposed method.
Extensive experiments are conducted to compare the modified U-Net with five deep learning models and three
image processing methods. The results demonstrate that the proposed method performs better than existing
methods. Cooperating with the modified U-Net for PV array extraction from complex scene, even a simple
hotspot detection method can achieve the accuracy of 99.79% and the F1 score of 0.9548.
1. Introduction

In order to utilize solar energy, the generation and installation of
photovoltaic (PV) modules has been growing rapidly in the last decade.
During transport, installation and subsequent stages, defects of PV
modules may occur (IEA, 2018). These defects will cause power loss
and degradation of PV modules, and even create safety issues (Köntges
et al., 2014). Therefore, it is necessary to inspect and maintain PV
modules regularly to increase the reliability, safety and performance
during their service life time. When a PV module is defective, one
cell or group of cells will be warmer than other parts. The overheated
area is called ‘‘hotspot’’ (IEC, 2016). Appearing frequently in PV plants,
the hotspot phenomena may not only indicate power loss but also
accelerate degradation of PV modules (Niazi et al., 2019; Dunderdale
et al., 2020a). With the development of unmanned aerial vehicles
(UAVs) in recent years (Gallardo-Saavedra et al., 2018), it is practical
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to implement the infrared thermal (IRT) cameras on board UAVs to
collect images efficiently for hotspot detection (Bommes et al., 2021).

Since automatic hotspot detection in aerial IRT images are attractive
for large-scale PV plants (Huerta Herraiz et al., 2020a; Su et al.,
2021), some researchers focused on how to detect hotspots in each
PV module. The study (Niazi et al., 2019) extracted the texture and
histogram of gradient features, and then used a Naive Bayes classifier
to detect hotspots. The study (Akram et al., 2020) detected hotspots
by transfer learning. The deep convolutional neural network (CNN)
was pre-trained from electroluminescence images dataset and then fine-
tuned on infrared images dataset. The study (Dunderdale et al., 2020b)
presented a deep learning and feature-based approach to identify dif-
ferent defect types according to the patterns of hotspots in PV modules.
The study (Ali et al., 2022) divided the IRT images of PV modules
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Nomenclature

Acronyms

PV Photovoltaic
UAV Unmanned aerial vehicle
IRT Infrared thermal
CNN Convolutional neural network
DBSCAN Density-based spatial clustering of applica-

tions with noise
ROI Region of interest
ReLU Rectified linear unit
MIoU Mean intersection over union
FWIoU Frequency weighted intersection over union
CIoU Class-wise intersection over union

Symbols

𝑝 Predicted distribution
𝑞 Annotated distribution
𝐿𝑘 Cross-entropy loss of pixel 𝑘
𝐿 Total cross-entropy loss
𝐶𝑛
𝑟𝑐 Mean intensity of the grid cell of the 𝑟th row

and 𝑐th column in the 𝑛th PV module
𝑆𝑛
𝑚 Mean intensity of the 𝑚th sub-string in the

𝑛th PV module
𝑀𝑛 Mean intensity of the 𝑛th PV module

Parameters

𝑇ℎ1 Threshold of grid cell
𝑇ℎ2 Threshold of sub-string
𝑇ℎ3 Threshold of PV module

into non-overlapping regions, and computed color image descriptors
of these regions as features. Then the machine learning algorithm was
used to classify the PV module into three classes including normal,
hotspot, and defective. However, these methods require PV modules
to be separated before hotspot detection.

There are also some works focused on PV module separation. The
study (Huerta Herraiz et al., 2020b) adopted the region-based CNNs to
detect PV modules. However, roughly representing the PV modules by
the rectangular bounding boxes is imprecise. The study (Xu et al., 2021)
considered the boundaries of photovoltaic modules as straight lines.
These boundaries were extracted by edge detection, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm and
linear fitting. However, in complex scene, various kinds of objects in the
environment appear to be interferential colors or edges in IRT images.
The boundaries of some objects outside the region of PV arrays could
also be straight lines, which may interfere with the separation of PV
modules. Therefore, a more effective and practical way is extracting
PV arrays from the complex background before separating PV modules.
Without appropriate extraction of PV arrays, the PV module separation
and hotspot detection algorithms mentioned above cannot work.

Several image processing methods have been designed to extract
PV arrays. The study (Dotenco et al., 2016) designed a data-driven
approach including normalization, thresholding, orientation estimation
and refinement to extract PV arrays. The study (Kim et al., 2016)
eliminated background by thresholding, removed the remaining noise
by dilatation, filled in the holes and applied erosion to select the
region of PV arrays in IRT images. The studies (Arenella et al., 2017;
Carletti et al., 2020) recognized the boundaries of PV arrays by Hough
transformation or Canny algorithm. The study (Vidal de Oliveira et al.,
2019) adopted Gaussian filter to decrease noise, Laplacian filter to
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detect boundaries and threshold filter to extract the PV arrays. The
study (Montanez et al., 2020) improved the contrast of images by
the Equalization of Adaptive Limited Contrast Histogram technique,
reduced noise by Gaussian filter, and then selected the region of PV
arrays by an adaptive thresholding algorithm. The study (Wang et al.,
2021) proposed an approach including the guided filter-based image
enhancement, line detection and background subtraction to extract PV
arrays. However, these image processing methods rely on features,
parameters or thresholds, which need to be manually designed. Finding
the appropriate parameters or thresholds usually takes a lot of time and
effort. To make matters worse, it is hard to represent the PV array as
simple features due to projective deformation, lens distortion and noise.
Consequently, these methods are impractical for complex scene.

Fortunately, the development of computer vision and machine
learning provides powerful end-to-end deep learning models, which
perform well for image segmentation on public datasets (Brostow
et al., 2009; Zhang, 2020). These models simulate the human visual
mechanisms to extract features, and have the ability to update param-
eters automatically by learning from annotated training samples. The
increasing installation of PV modules and the development of UAVs
make it possible to collect more and more images for creating datasets.
Therefore, deep learning models become practical for the inspection
and monitoring of PV systems. Among those deep learning models,
U-Net is a popular network, which has advantages on datasets with
fixed image semantics and structures (Zhang et al., 2019). PV arrays
appear as approximate quadrilateral regions with surrounding edges
in IRT images. These features can be considered as fixed semantics or
structures, which are suitable to be extracted based on U-Net.

The performance of U-Net depends on its structure, as well as the
initialization and optimization of parameters. Based on these observa-
tions, we propose a deep learning method, namely modified U-Net, to
extract PV arrays from complex scene. The contributions of our work
are summarized as follows:

(1) This work focuses on the problem of PV array extraction
from complex scene, which has not been solved in previous lit-
erature. The proposed method can learn features and parameters
automatically from the training dataset, which is practical for PV array
extraction from the complicated background.

(2) Several innovations are provided to improve the perfor-
mance of U-Net: Batch normalization layers are adopted to alleviate
internal covariate shift problems; ‘‘He initialization’’ is used to increase
the robustness and speed up the convergence; An adaptive optimization
method, namely ‘‘RMSprop’’ is adopted to update parameters.

(3) Aiming at PV array extraction from complex scenes, 1211 IRT
images containing complicated background are collected to verify the
effectiveness of the proposed method. The modified U-Net achieves
state-of-the-art mean intersection over union (MIoU) of 99.12% for
PV array extraction from complex scene in aerial IRT images to the
best of our knowledge.

(4) This work makes a great contribution to the researches and
pplications of automatic hotspot detection in aerial IRT images.
ooperating with the proposed approach for PV array extraction from
omplex scene, even a simple hotspot detection method can achieve the
ccuracy of 99.79% and the F1 score of 0.9548.

The rest parts of this paper are organized as follows. Basic concepts
nd the overall framework are introduced in Section 2. In Section 3,
he PV array extraction approach using the modified U-Net is described
n detail. The hotspot detection method is described in Section 4.
ubsequent to this, experiments and results are reported and discussed
n Section 5. Finally, conclusions are drawn in Section 6.

. Basic concept

This section introduces basic concepts including infrared thermal
maging, complex scene, PV array extraction, U-Net and hotspot detec-
ion, which are helpful to understand the following sections.
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Fig. 1. Visible and IRT images of PV modules. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
2.1. Infrared thermal imaging

Any object emit thermal radiation if its temperature is higher than 0
K. The spectral radiant emittance from the perfect radiator named black
body is revealed by Planck’s law (Hudson, 2006). A blackbody with
higher temperature will emit more radiation. Take advantage of this
property, IRT imaging cameras typically measure the infrared radiation
between 8 and 14 μm to estimate the temperature of objects (Köntges
et al., 2014).

For sources that are not blackbodies, the emissivity is defined by the
ratio of the radiation 𝑊 ′ of the material surface to the radiation 𝑊 of
a blackbody at the same temperature (Hudson, 2006), as shown in (1).

emissivity = 𝑊 ′

𝑊
(1)

The emissivity of solar cell cover glass is around 0.85 to 0.9 if
the angle of view is within 60◦ to 90◦ (Köntges et al., 2014; Subedi
et al., 2019). However, the emissivity of aluminum framework is less
than 0.2 in general (Wen and Chai, 2011). It means that the aluminum
frameworks, which appear at the boundaries of PV modules, will be
shown as lower temperature by IRT imaging cameras. Fig. 1 shows
the visible and IRT images of PV modules. In Fig. 1(a), the solar cells
covered by glass are shown in deep blue regions and the aluminum
frameworks are shown in thick white edges surrounding PV modules.
In Fig. 1(b), the PV modules are shown in orange regions and the
aluminum frameworks are shown in deep orange edges surrounding
PV modules. Due to projective deformation, lens distortion and noise,
the PV modules appear as approximate quadrilaterals in IRT images
although they are actually rectangles. These characteristics should be
noticed for PV array extraction.

2.2. Complex scene and PV array extraction

PV plants may be constructed in a variety of environments, includ-
ing but not limited to mountains, fish ponds and roofs. The IRT images
captured by UAVs will not only contain PV modules, but also other
irrelevant objects. These irrelevant objects with different temperature
or emissivity, will be shown by varying colors or brightness in IRT
images. The temperature of some objects in the environment may be
even higher than PV modules, which will interfere with the process
of automatic inspection of PV modules in IRT images. This kind of
environment is called ‘‘complex scene’’.

For intelligent inspection (such as hotspot detection) of PV modules
in complex scene, a reasonable idea is to extract PV arrays in IRT
images as region of interest (ROI) and ignore other irrelevant regions.
The IRT image captured by the UAV from complex scene is shown in
Fig. 2(a), and PV arrays extracted as ROI are shown in Fig. 2(b). It is
obvious that the interference of other objects in complex scene can be
avoid by PV array extraction, which is the focus of this paper.
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2.3. U-Net

U-Net is an end-to-end model for image semantic segmentation,
which can predict the class of objects at every pixel. The architecture
of U-Net consists of a contracting path to extract features from low
level to high level, and a expanding path to output finer pixel-wise
predictions (Ronneberger et al., 2015). The parameters of U-Net can
be learned by annotated training samples, making it possible to extract
features from images automatically.

Compared with other end-to-end models, U-Net has advantages
on datasets with fixed image semantics and structures. As mentioned
in Section 2.1, PV arrays appear as approximate quadrilaterals with
surrounding edges in IRT images. These features can be considered as
fixed semantics or structures, which are suitable to be extracted based
on U-Net. However, the original U-Net is designed for biomedical image
segmentation, and it needs to be adjust to achieve desired performance
when used for PV array extraction from the complex background in IRT
images. The modified U-Net for PV array extraction will be described
in Section 3.

2.4. Hotspots detection

The temperature difference between hotspot and the normal area
can be multiples of 10 K (IEA, 2018). With appropriate measurement
conditions, hotspots can be found in IRT images by different color or
brightness. IRT image patterns observed in outdoor measurements are
summarized in Köntges et al. (2014) and Tsanakas et al. (2016).

According to Section 1, there are three important issues for hotspot
detection in aerial IRT images. The first one is PV array extraction from
complex scene, the second one is PV module separation, and the third
one is detecting overheated regions in each PV module. In this paper,
we mainly focus on the extraction of PV arrays in IRT images collected
by UAVs. Base on the concepts described in this section, we propose a
novel approach for PV array extraction using the modified U-Net and
then apply it for hotspot detection in aerial IRT images. The framework
is shown in Fig. 3 and more details will be described in Sections 3 and
4.

3. PV array extraction

Inspired by the characteristics of U-Net and new insights in the
field of machine learning, we design a modified U-Net for PV array
extraction from the complex background in IRT images. The archi-
tecture of the modified U-Net is described in Section 3.1. Next the
training and prediction process is described in Section 3.2. Then, the
improvements of the proposed model compared with the original U-Net
are summarized in Section 3.3.
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Fig. 2. Complex scene and ROI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. The framework of PV array extraction and hotspot detection.
3.1. The architecture of the modified U-Net

The architecture of our modified U-Net is shown in Fig. 4. This
model consists of a contracting path (left side in Fig. 4) to extract high-
level features and a expansive path (right side in Fig. 4) to output pixel
labels. At each level, feature maps are calculated by a convolutional
layer with zero-padding, normalized by a batch normalization layer and
then nonlinearized by a Rectified Linear Unit (ReLU) layer.

On the contracting path, the height and width of feature maps are
both halved by a maxpooling layer from low level to high level. On the
expansive path, the height and width of feature maps are both doubled
by an up-sampling layer from high level to low level. Feature maps
obtained by up-sampling and copied from the left side are concatenated
together to provide more accurate output. The feature maps at level 2
on the right are converted to 2 channels, corresponding to 2 classes:
PV array and background, respectively. The softmax function is used
to activate the feature maps and produce probabilistic results. Pixel
labels are predicted to be the class with the highest probability and
then resized to 512 × 640, as output segmentation images. Different
operation layers in Fig. 4 are described as follows:

Convolutional layers are essential for feature extraction. They
compute feature maps corresponding to filters/kernels with learnable
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parameters. The size of filters is 3 × 3 in our model. We adopted zero-
padding to keep the size of images unchanged. The operation of the
convolutional layer is illustrated in Fig. 5. To simplify the visualization,
we only show one channel of the input.

The kernel convolves with each channel of the input and generates
the corresponding output matrix. Then the feature map is obtained
by adding all these output matrices. It should be noticed that the
parameters of the kernel are learnable and each kernel results in one
feature map. In the feature map, the element with larger value indicates
that its feature is more significant.

Rectified Linear Unit (ReLU) layers applies the activation func-
tion, as shown in (2), to each element in feature maps computed by
convolutional layers, for non-linearity of the model.

𝑅(𝑥) = max(0, 𝑥) (2)

As shown in Fig. 6, ReLU activation function simulates the acti-
vation or inhibition mechanism of human neurons: If the value of an
element in the feature map is larger than zero, the element is activated;
else if the value of an element in the feature map is less than zero, the
element is inhibited.

Batch normalization layers convert input features to normalized
features with mean zero and variance one according to mini-batches of
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Fig. 4. The architecture of the modified U-Net. (The arrows represent different operations shown in the lower right corner. The boxes correspond to feature maps. The number
of channels is provided on top of boxes. The height and width of feature maps keep invariant at each level, denoted at the left or right side of boxes.)
Fig. 5. The operation of the convolutional layer. (The size of the input is simplified as 5 × 5 for visualization. Each blue box denotes an element of the input. The gray boxes
surrounding the input show zero-padding. The orange boxes denote parameters of the kernel, which can be considered as a matrix. And the numbers in the yellow bounding box
in the input can be considered as another matrix. The dot product of these two matrices generates the value in the black bounding box in the output. It can be noticed that the
location of the black bounding box in the output corresponds to the center of the yellow bounding box in the input.) (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
training samples (Ioffe and Szegedy, 2015), as shown in (3),

𝑥 =
𝑥 − 𝜇

√

𝜎2 + 𝜖
(3)

where 𝑥 is the element in the feature map, 𝑥 is the normalized element
in the feature map, 𝜇 is the mean value of 𝑥 over mini-batches, 𝜎2 is the
variance of 𝑥 over mini-batches and 𝜖 is a small constant for numerical
stability.

It can be observed in Fig. 5 that during the operation of the convolu-
tional layer, the output generated by each channel of the input depends
on the parameters of the kernel. Consequently, the elements in the
feature map are also influenced by the parameters of the corresponding
kernel. During the training process, updating the parameters of the
kernel would cause the change in the distribution of its correspond-
ing feature maps over training samples, which is known as internal
covariate shift (Ioffe and Szegedy, 2015).
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Fig. 6. ReLU activation function.

However, ReLU layers are expected to activate the elements with
significant features, meanwhile, inhibite other elements. If the elements
in feature maps over training samples have zero means and unit vari-
ances, the ReLU layers would work more effectively and the model
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would perform better. Therefore, we insert batch normalization layers
after convolutional layers and before ReLU layers. Batch normalization
is a good way to reduce internal covariate shift and alleviate problems
caused by bad initialization of parameters (Ioffe and Szegedy, 2015). It
also benefits the training process.

Maxpooling layers are in charge of down-sampling. In each 2 × 2
eceptive field, only the max element is retained, other 3 elements are
iscarded. There is no overlap between different receptive fields with
he stride of 2. After maxpooling, the height and width of feature maps
ill be halved.
Up-sampling layers double the height and width of feature maps

imply by repeating the elements.
Concatenate layers combine feature maps computed by up-

ampling layers with copies of feature maps at the same level on the
eft side of the model. It can alleviate the information loss caused by
receding operation.
Softmax layer converts feature maps to probabilistic results, as

hown in (4),

= 𝑒𝑓𝑖
∑

𝑗 𝑒
𝑓𝑗

(4)

where 𝑖, 𝑗 represent different classes and 𝑓𝑖, 𝑓𝑗 denote calculated values
n the previous layer.
Argmax layer predicts pixel labels to be the one with the highest

robability.
Resizing layer resizes pixel labels to 512 × 640 as output segmen-

ation images.

.2. Train the model and predict pixel labels

The model described in Section 3.1 has trainable parameters in
onvolutional layers. The weights of kernels or filters and biases need
o be initialized before training the model. In the training stage, for
nput images, the modified U-Net provides corresponding output seg-
entation images with pixel labels. Then the loss function compares the
ifference between predicted pixel labels and annotated pixel labels.
his loss can be propagated from latter layers to previous layers by
artial derivative and the chain rule, namely ‘‘back propagation’’. Next,
arameters are updated by the optimization method. With updated
arameters, the model provides new predicted pixel labels. The loss
unction is calculated again. Parameters are optimized and updated
nce more. This loop will be executed for a specified number of epochs
nd stop. In the test stage, the modified U-Net provides predicted pixel
abels according to test images. The training and prediction process is
llustrated in Fig. 7.

Some essential steps are explained as follows:
Initialization: Before training the model, all the parameters need to

e initialized. It is common practice to initialize CNNs by small values
andomly drawn from Gaussian distribution with fixed variance. But for
eep models, the highly non-linear property calls for more appropriate
nitialization method to accelerate the training process and avoid dis-
onvergence. In our work, a robust initialization method considering
he ReLU activation, called ‘‘He initialization’’, He et al. (2015) is
dopted to randomly generate values from a uniform distribution [−𝑙, 𝑙]

defined by (5),

𝑙 =
√

6∕input−num (5)

where input−num represents the number of inputs in the weight tensor
in each layer.

This method is designed for deep neural networks with Rectified
activation units. It provides good initialization of parameters, which
can speed up the convergence, increase the robustness of deep models
and improve the accuracy as well (He et al., 2015).

Loss function: Since the softmax classifier is used in the model,
95

we adopt the cross-entropy loss to evaluate the difference between p
predicted pixel labels and annotated pixel labels. The cross-entropy (Li,
2016) between two distributions: 𝑝 and 𝑞 is shown in (6),

𝐻(𝑞, 𝑝) = −
∑

𝑥
𝑞(𝑥) log 𝑝(𝑥) (6)

where 𝑝 represents the predicted distribution shown in (4) and 𝑞
denotes the annotated distribution. More detailedly, if 𝑦𝑘 is the class
label of pixel 𝑘, 𝑝 = [0,… , 1,… , 0] with a single 1 at the 𝑦𝑘th position.
As a result, the cross-entropy loss of pixel 𝑘 is defined as (7).

𝐿𝑘 = − log

(

𝑒𝑓𝑦𝑘
∑

𝑗 𝑒
𝑓𝑗

)

= −𝑓𝑦𝑘 + log
∑

𝑗
𝑒𝑓𝑗 (7)

The total cross-entropy loss is defined as (8).

=
∑

𝑘
𝐿𝑘 (8)

Optimization: The simplest optimization method is to change pa-
ameters with a fixed learning rate. But updating all the parameters
qually and globally faces the trade-off between stability and effi-
iency. In deep neural networks, the appropriate learning rates may
ary widely (Hinton, 2012). With a small learning rate, the training
rocess will be time-consuming. With a large learning rate, the model
ay not converge. To solve this problem, various adaptive learning
ethods have been proposed. In our work, an effective and robust

ptimization method called ‘‘RMSprop’’ (Hinton, 2012) is adopted. It
pdates parameters adaptively using a global learning rate divided by
he moving average of squared gradients (Li, 2016), as shown in (9)
nd (10),

𝑠(𝑤, 𝑡) = decay−rate ⋅ 𝑚𝑠(𝑤, 𝑡 − 1) +
(

1 − decay−rate
)

⋅
( 𝜕𝐿
𝜕𝑤

(𝑡)
)2

(9)

= 𝑤 − learning−rate ⋅
𝜕𝐿
𝜕𝑤

(𝑡)∕(
√

𝑚𝑠(𝑤, 𝑡) + eps) (10)

where ms(𝑤, 𝑡) represents the moving average of the squared gradient
for each weight; 𝑤 is the weight to be updated; decay−rate is a
hyperparameter set as 0.9; learning−rate is set as 0.001; eps is a small
onstant for numerical stability, set as 10−7.

RMSProp algorithm adjusts the learning rate of each weight based
n the magnitudes of its gradients, which has a beneficial effect for the
ptimization of parameters (Li, 2016).

.3. The improvements of the proposed model

Compared with the original U-Net, the improvements of the pro-
osed model are summarized as follows.
Batch normalization: In terms of the architecture of the model,

atch normalization layers are inserted after convolutional layers and
efore ReLU layers. They convert input features to normalized features
ith mean zero and variance one. Batch normalization can alleviate
roblems caused by internal covariate shift and/or bad initialization. It
an also accelerate the learning of parameters.
Initialization: In the beginning of training process, a robust ini-

ialization method designed for deep neural networks with Rectified
ctivation units, called ‘‘He initialization’’, is adopted to randomly
enerate values from a uniform distribution. It provides good initial-
zation of parameters, which can speed up the convergence, increase
he robustness of deep models and improve the accuracy as well.
Optimization: As the core of the training process, an adaptive

ptimization method called ‘‘RMSprop’’ (Hinton, 2012) is adopted to
pdate parameters using a global learning rate divided by the moving
verage of squared gradients. This optimization method can not only
ccelerate the training process, but also ensure the stability when the
arameters of convolutional layers are updated.
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Fig. 7. Training and prediction.
4. Hotspot detection

In order to verify the validity of PV array extraction, a simple
method for hotspot detection is designed in this section. Since we
mainly focus on PV array extraction in this paper, the hotspot detection
method is described in brief. Firstly, PV arrays are extracted by the
proposed approach shown in Section 3. Secondly, PV modules are
separated, as described in Section 4.1. Thirdly, hotspots are detected
in each PV module, as described in Section 4.2.

4.1. PV module separation

For the IRT image shown in Fig. 8(a), its pixel labels are predicted
in Fig. 8(b) using the proposed method described in Section 3. Subse-
quently, the PV modules are separated using the approach (Xu et al.,
2021) including the following steps:

Step 1: PV array near the bounds of the image is ignored, as shown
in Fig. 8(c).

Step 2: The boundary of the remaining PV array is detected by
Canny algorithm and the longest line is found by Hough transformation
as shown in Fig. 8(d).

Step 3: The thermal image is converted to the grayscale image, and
the PV array is extracted according to Fig. 8(e).

Step 4: The PV array is rotated according to the direction of the
longest line, and the intensity of the PV array is inverted as shown in
Fig. 8(f).

Step 5: Peaks are found by horizontally scanning, as shown in
Fig. 8(g).
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Step 6: The points near the upper and lower bounds of each array
are ignored and the remaining points are clustered using DBSCAN
algorithm, as shown in Fig. 8(h).

Step 7: Linear fitting is adopted for the points of each cluster, and
these lines intersect the boundary of each array, as shown in Fig. 8(i).

Step 8: The horizontal boundaries between two adjacent vertical
boundaries are obtained in the same way, as shown in Fig. 8(j).

Step 9: The incomplete PV modules near the bound of the image are
ignored, the masks of PV modules are shown in Fig. 8(k).

Step 10: The masks of PV modules in the IRT image can be obtained
by rotating Fig. 8(k), as shown in Fig. 8(l).

4.2. Hotspot detection in each PV module

Each PV module is divided into grid cells, shown in Section 4.2.1.
Then multi-level features are extracted, described in Section 4.2.2.
Next, PV modules with overheated regions are detected, shown in
Section 4.2.3.

4.2.1. Grid cell segmentation
Each PV module is divided into grid cells by the following steps.
Step 1: PV modules in IRT images can be represented as quadri-

laterals. The vertexes of each PV module are found by the mask and
the quadrangular boundaries are shown in Fig. 9. Module 1 is normal,
while modules 2 and 3 present hotspots.

Step 2: Rectangular PV modules are recovered by removing perspec-
tive distortion (Hartley and Zisserman, 2004).
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Fig. 8. Separation of PV modules.
Fig. 9. Quadrangular boundaries of separate PV modules.

Step 3: Each rectified PV module is divided into 10 × 6 grid cells.
The rectified PV modules 1, 2, 3 and their segmentation of grid cells
are shown in Fig. 10.

4.2.2. Feature extraction
Inspired by the study (Dotenco et al., 2016; Kim et al., 2016), we

extract multi-level features to detect hotspots. For each PV module, the
following features are calculated.

Grid cell level: Mean intensity of grid cells in the 𝑛th PV module
are represented as 𝐶𝑛

𝑖𝑗 , 𝑖 = 1, 2,… , 10; 𝑗 = 1, 2,… , 6. These features are
adopted to identify overheated cells.

Sub-string level:Mean intensity of sub-strings in the 𝑛th PV module
are denoted as 𝑆𝑛

𝑘 , 𝑘 = 1, 2, 3. These features are useful to detect
overheated sub-strings.

Module level: Mean intensity of the 𝑛th PV module is represented
as 𝑀𝑛, 𝑛 = 1, 2,… , 𝑁 , where 𝑁 is the number of PV modules in the
IRT image. These features are adopted to identify overheated modules.

4.2.3. Hotspot detection
Based on the features extracted above, we design the hotspot detec-

tion algorithm including the following steps.
Step 1: Set 𝑛 = 1.
Step 2: Iterate through each grid cell of the 𝑛th PV module, if there

exist 𝑖 and 𝑗 that satisfy 𝐶𝑛
𝑖𝑗 − 𝑀𝑛 > 𝑇ℎ1 (𝑇ℎ1 is the threshold, set as

25), this cell is regarded as hotspot.
Step 3: If the 𝑘th sub-string of the 𝑛th PV module satisfies 𝑆𝑛

𝑘−𝑀𝑛 >
𝑇ℎ2 (𝑇ℎ2 is the threshold, set as 10), this sub-string is considered to be
overheated.

Step 4: If the 𝑛th PV module satisfies 𝑀𝑛 − 𝑀 > 𝑇ℎ3 (𝑀 is the
mean intensity of the total 𝑁 modules in the IRT image, and 𝑇ℎ3 is the
threshold, set as 15), this module is regarded as overheated.

Step 5: If 𝑛 < 𝑁 , let 𝑛 = 𝑛 + 1 and skip to step 2; else stop.
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Table 1
Dataset information — samples.

Positive Negative Total

Number 675 536 1211

Table 2
Dataset information — PV modules.

Normal Hotspot Total

Number 8918 210 9128

Table 3
Software and version.

Software Python Conda Tensorflow Keras Opencv-python

Version 3.6.10 4.8.2 2.2.0 2.4.3 4.2.0

5. Experiments and results

5.1. Experimental preparation

5.1.1. Dataset
IRT images are captured using the thermographic camera FLIR Vue

Pro (640, 19 mm) with the unmanned aerial vehicle from a PV plant
in Jiangsu, China. These images are obtained when the sky is clear
without clouds. The solar irradiance are higher than 800 W∕m2. We
collect 1211 IRT images in total, including 675 positive samples and
536 negative samples. PV modules are present in positive samples and
absent in negative samples, as shown in Fig. 11(a) and (b) respectively.

All these samples are split into three folds for cross validation.
In subsequent experiments, one fold is regarded as the test set and
the other two are used as training set. The dataset information about
samples is listed in Table 1. In addition, we counted PV modules
appeared in these samples. There are 9128 complete modules in total,
including 8918 normal modules and 210 modules with hotspots. This
information is listed in Table 2.

5.1.2. Software
Python is used as the programming language, which is installed

and managed by Conda. In addition, two open-source frameworks for
machine learning, namely TensorFlow and Keras are adopted. The
open-source computer vision library known as OpenCV-python is also
utilized. The versions of related software are listed in Table 3.

5.2. PV array extraction

Firstly, the ground truth of pixels is labeled by the open annotation
tool called LabelMe. All the pixels are classified into two classes: PV



Solar Energy 240 (2022) 90–103Y. Shen et al.
Fig. 10. Rectified PV modules and the segmentation of grid cells.
Fig. 11. The positive sample and the negative sample.
Fig. 12. The training loss and accuracy with epoches for three folds.
array and background. Next, we use our modified U-Net for PV array
extraction from complex scene.

The training loss and accuracy with epoches of our modified U-Net
are shown in Fig. 12. The training loss/accuracy curves are smooth and
gradually convergent, which implies that our modified U-Net is robust
for PV array extraction.

We use mean intersection over union (MIoU), frequency weighted
intersection over union (FWIoU) and class-wise intersection over union
(CIoU) in this section for performance evaluation of PV array extrac-
tion.

Mean intersection over union (MIoU) is the most commonly used
evaluation for semantic segmentation, defined as the average intersec-
tion over union between ground truth pixel labels and predicted pixel
labels (Long et al., 2015), as shown in (11),

MIoU = 1
𝑘 + 1

𝑘
∑

𝑖=0

𝑃𝑖𝑖
∑𝑘

𝑗=0 𝑃𝑖𝑗 +
∑𝑘

𝑗=0 𝑃𝑗𝑖 − 𝑃𝑖𝑖
(11)

where 𝑘 denotes the number of classes; 𝑃𝑖𝑗 represents the number of
pixels with ground truth class 𝑖 predicted as class 𝑗.
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Frequency weighted intersection over union (FWIoU) is calculated
according to the frequency, namely the number of pixels for each
class (Long et al., 2015), as shown in (12).

FWIoU = 1
∑𝑘

𝑖=0
∑𝑘

𝑗=0 𝑃𝑖𝑗
⋅

𝑘
∑

𝑖=0

𝑃𝑖𝑖 ⋅
∑𝑘

𝑗=0 𝑃𝑖𝑗
∑𝑘

𝑗=0 𝑃𝑖𝑗 +
∑𝑘

𝑗=0 𝑃𝑗𝑖 − 𝑃𝑖𝑖
(12)

Class-wise intersection over union (CIoU) is defined to evaluate the
performance for each class (Schneider et al., 2017), as shown in (13).

CIoU(𝑖) =
𝑃𝑖𝑖

∑𝑘
𝑗=0 𝑃𝑖𝑗 +

∑𝑘
𝑗=0 𝑃𝑗𝑖 − 𝑃𝑖𝑖

(13)

5.2.1. Comparison with existing deep learning models
Five existing deep learning models for semantic segmentation are

adopted for comparison, namely FCN (Long et al., 2015; Shelhamer
et al., 2017), SegNet (Badrinarayanan et al., 2017), U-Net (Ronneberger
et al., 2015), Res U-Net (Zhang et al., 2019) and VGG U-Net (Sovetkin
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Fig. 13. PV array extraction from complex scene by deep learning models.
et al., 2021). All the samples are split into three folds for cross valida-
tion. One fold is regarded as the test set and the other two are used as
training set.

The performance evaluation is shown in Table 4. Among these
deep learning methods, U-Net works better than FCN and SegNet.
Meanwhile, Res U-Net and VGG U-Net outperform the original U-Net
owing to transform learning. Our modified U-Net achieves the highest
MIoU, FWIoU and CIoUs for PV array extraction from complex scene
in aerial infrared thermal imagery.

The results of PV array extraction by different deep learning meth-
ods are shown in Fig. 13. Each column represents a sample. Positive
samples are shown in the left four columns and the negative sample
is shown in the rightmost column. The infrared thermal images are
shown in the first row and the ground truth is shown in the second
row. PV arrays extracted by different methods are shown from the
third to eighth rows. Although existing deep learning models can
learn to extract features automatically from different kinds of complex
environment, the predicted pixel labels of these models present some
obvious mistakes.

The mainly weaknesses of these existing deep leaning models are
summarized as follows: The PV arrays are extracted incompletely,
especially for the results of FCN, SegNet and U-Net in the fourth column
in Fig. 13; The narrow interval between two adjacent PV arrays is prone
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to be misrecognized as the region of PV array; Internal holes appear in
the extracted PV array, especially for the results of VGG U-Net and Res
U-Net; Some region in the background would be misidentified as the
PV array, shown in the rightmost column in Fig. 13.

Compared with these deep learning models, the predicted pixel
labels of the modified U-Net are consistent with the ground truth. The
results verify that the proposed model works well and performs better
than these existing deep learning models.

5.2.2. Comparison with image processing methods
The proposed model is also compared with three image processing

methods (Kim et al., 2016; Montanez et al., 2020; Wang et al., 2021).
The performance evaluation of these image processing methods are
shown in Table 5. The average MIoU, FWIoU, CIoU for background and
CIoU for PV array of the modified U-Net are 0.9912, 0.9960, 0.9977
and 0.9847 respectively, as shown in Table 4. Compared with Table 5,
it can be found that the modified U-Net significantly outperforms these
image processing methods.

The results of PV array extraction by the proposed model and the
image processing methods (Kim et al., 2016; Montanez et al., 2020;
Wang et al., 2021) are compared in Fig. 14. Each column represents
a sample. Positive samples are shown in the left four columns and
the negative sample is shown in the rightmost column. The infrared



Solar Energy 240 (2022) 90–103Y. Shen et al.
Fig. 14. PV array extraction from complex scene by the modified U-Net and image processing methods.
Fig. 15. Comparison of MIoU and CIoU for PV array.
thermal images are shown in the first row and the ground truth is
shown in the second row. PV arrays extracted by different methods are
shown from the third to sixth rows.

The method (Kim et al., 2016) eliminates the background by thresh-
olding. However, it is difficult to find the fixed threshold in complex
scenes. Consequently, some regions in the background with high inten-
sity would be misidentified as the PV array while some region in the
PV array with low intensity would be misclassified as the background.
The method (Montanez et al., 2020) uses an adaptive thresholding
algorithm, performing better than the fixed threshold. However, there
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is still some misidentification between the PV array and the back-
ground. The method (Wang et al., 2021) represents the PV array as
rectangles, which can avoid the distraction of complex background in
most cases. However, the rectangular object in the background would
be misidentified as the PV array. Besides, the PV array is not a standard
rectangle in the IRT image due to projective deformation and lens
distortion. As a result, there would be some errors at the edges of PV
arrays.

Compared with these image processing methods, the proposed mod-
ified U-Net can learn to update parameters automatically from training
samples. The predicted pixel labels of the modified U-Net are consistent
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Table 4
Performance of deep learning models.

Model MIoU FWIoU CIoU

Background PV array

Fold 1

FCN 0.9257 0.9659 0.9798 0.8715
SegNet 0.9479 0.9760 0.9856 0.9103
U-Net 0.9580 0.9808 0.9887 0.9272
Res U-Net 0.9653 0.9842 0.9906 0.9400
VGG U-Net 0.9705 0.9867 0.9922 0.9487
Modified U-Net 0.9914 0.9961 0.9978 0.9850

Fold 2

FCN 0.9303 0.9671 0.9806 0.8801
SegNet 0.9505 0.9764 0.9859 0.9151
U-Net 0.9634 0.9828 0.9898 0.9371
Res U-Net 0.9696 0.9856 0.9915 0.9477
VGG U-Net 0.9668 0.9845 0.9910 0.9426
Modified U-Net 0.9910 0.9958 0.9976 0.9844

Fold 3

FCN 0.9246 0.9645 0.9788 0.8703
SegNet 0.9475 0.9752 0.9851 0.9099
U-Net 0.9588 0.9807 0.9886 0.9290
Res U-Net 0.9667 0.9845 0.9908 0.9427
VGG U-Net 0.9680 0.9852 0.9914 0.9446
Modified U-Net 0.9912 0.9959 0.9977 0.9847

Average

FCN 0.9269 0.9659 0.9797 0.8740
SegNet 0.9486 0.9759 0.9855 0.9118
U-Net 0.9601 0.9814 0.9890 0.9311
Res U-Net 0.9672 0.9848 0.9910 0.9434
VGG U-Net 0.9684 0.9855 0.9915 0.9453
Modified U-Net 0.9912 0.9960 0.9977 0.9847

Table 5
Performance of image processing methods.

Method MIoU FWIoU CIoU

Background PV array

Kim et al. (2016), 0.8518 0.9305 0.9585 0.7451
Montanez et al. (2020) 0.8955 0.9524 0.9727 0.8183
Wang et al. (2021) 0.9031 0.9549 0.9733 0.8328

with the ground truth, which indicates that the proposed model works
well and performs better than these image processing methods.

5.2.3. Discussion
MIoU is the most commonly used evaluation for semantic segmenta-

tion, and CIoU for PV array is closely related to the performance of PV
array extraction from complex scene in IRT images. Therefore, these
two indicators of different methods are visualized and compared in
Fig. 15. Obviously the proposed modified U-Net achieves the highest
MIoU and CIoU for PV array.

The image processing methods (Kim et al., 2016; Montanez et al.,
2020; Wang et al., 2021) rely on manual designed features, parameters
or thresholds, which are unable to learn from the large available IRT
images obtained by UAVs. The accuracy of these methods is limited
compared with deep learning models.

Among the deep learning models, U-Net performs better than Seg-
Net and FCN because its concatenate layers alleviate the information
loss. VGG U-Net and Res U-Net improve the performance of U-Net by
transfer learning to obtain better initialization of parameters. However,
they replace the base model of U-Net with VGG-Net and ResNet respec-
tively, which have more layers and parameters. As a result, training
these models requires more annotated samples and more time. The
proposed model modifies the U-Net in other ways. The modified U-Net
adopts batch normalization layers to alleviate internal covariate shift
problems, ‘‘He initialization’’ to increase the robustness and ‘‘RMSprop’’
to update parameters adaptively. The experimental results show that
the modified U-Net satisfactorily solves the problem of PV array ex-
traction from complex scene, which outperforms the existing methods.
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Table 6
Results of hotspot detection.

True positive True negative False positive False negative

201 8908 10 9

Table 7
Performance evaluation of hotspot detection.

Accuracy Precision Recall F1 score

99.79% 0.9526 0.9571 0.9548

Fig. 16. Confusion matrices for hotspot detection.

Fig. 17. Detect PV modules with hotspots in complex scene.

5.3. Hotspot detection

Accuracy, Precision, Recall, F1 score and confusion matrix are used
in this section for performance evaluation of hotspot detection. They
are defined as (14) to (17),

Accuracy =
True Positive + True Negative

𝑁
× 100% (14)

Precision = True Positive
True Positive + False Positive (15)

Recall = True Positive
True Positive + False Negative (16)

F1 score = 2 × Precision × Recall
Precision + Recall (17)

where True Positive denotes the number of hotspot samples predicted
correctly; True Negative represents the number of normal samples
predicted correctly; False Positive denotes the number of normal sam-
ples mis-classified as hotspot; False Negative represents the number
of hotspot samples mis-classified as normal; 𝑁 is the total number of
samples.

The results of hotspot detection are shown in Table 6. True Positive
and True Negative are much larger than False Positive and False
Negative, which means that most of the PV modules are classified
correctly.

The performance evaluation is shown in Table 7. The accuracy is
99.79% and the F1 score is 0.9548, indicating that the simple hotspot
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Fig. 18. Correct predictions of PV modules.
Fig. 19. Incorrect predictions of PV modules.

detection method performs well, cooperating with PV array extraction
from the complex scene.

The confusion matrices are shown in Fig. 16. For normal PV mod-
ules, 99.89% of them are classified correctly and only 0.11% are mis-
classified as hotspot. For PV modules with hotspots, 95.71% of them
can be detected correctly while 4.29% are mis-classified as normal.

Hotspot detection in IRT images collected by the UAV are shown in
Fig. 17. With accurate extraction of PV arrays from complex scene by
the modified U-Net, PV modules are separated. Subsequently, they are
classified as normal and hotspot, shown with black and cyan bounding
boxes respectively.

Some correct predictions of PV modules are presented in Fig. 18.
Different patterns of hotspots can be detected correctly, as the left
6 columns in Fig. 18. Most normal modules are predicted as normal
correctly, as shown in Fig. 16 and the rightmost column in Fig. 18.

Some incorrect predictions of PV modules are shown in Fig. 19.
The temperature of hotspot might be multiples of 10 K higher than the
normal region in the PV module. However, the temperature in a normal
PV module may also differ by several degrees, even under appropriate
conditions. As a result, a few mild hotspots are failed to be detected, as
shown in the left 3 columns in Fig. 19. And a few normal PV modules
with higher temperature difference are predicted incorrectly as hotspot,
shown in the right 2 columns in Fig. 19.

6. Conclusion

This work focuses on the problem of PV array extraction from
complex scene, which has not been solved in previous literature. The
102
proposed deep learning model, namely modified U-Net, can learn fea-
tures and parameters automatically by the large available IRT images.
Several innovations are provided to improve the performance of U-Net:
(1) batch normalization layers is adopted to alleviate internal covariate
shift problems; (2) ‘‘He initialization’’ is used to increase the robustness
and speed up the convergence; and (3) ‘‘RMSprop’’ is adopted to update
parameters adaptively. The extensive experiments are conducted to
compare the modified U-Net with five deep learning models and three
image processing methods. The results demonstrate that the proposed
method performs better than existing methods. This work makes a
great contribution to the researches and applications of automatic
hotspot detection in aerial IRT images. Cooperating with the proposed
approach for PV array extraction from complex scene, even a simple
hotspot detection method can correctly classify most of the PV modules
into normal or hotspot. However, a few mild hotspots are failed to
be detected. In future research work, the hotspot detection algorithm
shall be replaced with more advanced methods in computer vision
and pattern recognition. In addition, the dataset would be expanded
to validate the generalization ability of the proposed method. More
IRT images might be collected from different PV stations, at various
irradiance levels. The proposed modified U-Net could also be used in
visible images collected by UAVs to extract PV arrays, which is useful
for intelligent monitoring and inspection of PV plants.
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